On Gevrey Regularity of the Supercritical Sqg Equation in Critical Besov Spaces

نویسندگان

  • ANIMIKH BISWAS
  • VINCENT R. MARTINEZ
  • PRABATH SILVA
چکیده

In this paper, we show that the solution of the supercrtical surface quasi-geostrophic (SQG) equation, with initial data in a critical Besov space, belongs to a subanalytic Gevrey class. In order to prove this, a suitable estimate on the nonlinear term, in the form of a commutator, is required. We express the commutator as a bilinear multiplier operator and obtain single-scale estimates for its symbol. In particular, we show that the localized symbol is of Marcinkiewicz type, and show that due to the localizations inherited from working in the Besov spaces, this condition implies the requisite boundedness of the corresponding operator. This result strengthens previous ones which showed that solutions starting from initial data in critical Besov spaces are classical. As a direct consequence of our method, decay estimates of higher-order derivatives are easily deduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces

Article history: Received 5 October 2007 Revised 6 February 2010 Available online 26 February 2010

متن کامل

New maximal regularity results for the heat equation in exterior domains, and applications

This paper is dedicated to the proof of new maximal regularity results involving Besov spaces for the heat equation in the half-space or in bounded or exterior domains of R.We strive for time independent a priori estimates in regularity spaces of type L1(0,T ;X) where X stands for some homogeneous Besov space. In the case of bounded domains, the results that we get are similar to those of the w...

متن کامل

On the well-posedness of the full low-Mach number limit system in general critical Besov spaces

This work is devoted to the well-posedness issue for the low-Mach number limit system obtained from the full compressible Navier-Stokes system, in the whole space R with d ≥ 2. In the case where the initial temperature (or density) is close to a positive constant, we establish the local existence and uniqueness of a solution in critical homogeneous Besov spaces of type Ḃ p,1. If, in addition, t...

متن کامل

Long Time Dynamics of Forced Critical Sqg

We prove the existence of a compact global attractor for the dynamics of the forced critical surface quasi-geostrophic equation (SQG) and prove that it has finite fractal (box-counting) dimension. In order to do so we give a new proof of global regularity for critical SQG. The main ingredient is the nonlinear maximum principle in the form of a nonlinear lower bound on the fractional Laplacian, ...

متن کامل

Besov Regularity for Elliptic Boundary Value Problems

This paper studies the regularity of solutions to boundary value problems for Laplace's equation on Lipschitz domains in R d and its relationship with adaptive and other nonlinear methods for approximating these solutions. The smoothness spaces which determine the eeciency of such nonlinear approximation in L p (() are the Besov spaces B (L (()), := (=d + 1=p) ?1. Thus, the regularity of the so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015